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It is shown that unitary operators giving rise to approximate symmetries associated
with nonconserved currents cannot exist in relativistic field theory.

In recent literature a number of difficulties
connected with the introduction of space inte-
grals of the zero component of a nonconserved
local current have been pointed out.!™® In this
context it is interesting to remark that some
of the arguments in those papers rested upon
the assumption that

Q(t) = [{°(%, t)d®x = lim | X, t)d®x (1)
V=0 v
should be understood in the sense of a weak
limit, i.e.,

@, Q9) = lim (y, [ P&, % 0). (2

U = 0

This is, however, too strong an assumption
as can be seen clearly already in the case of
conserved current and exact symmetry. In fact,
taking the very trivial example of a free sca-
lar charged field one can build a two-particle
state
= o (K +Kp)- (K -Ky)
= A B 7 s s 1
'2> ff(kl’ kz) (kl +k2)2

xa (k)b (K,)d%, %k, 10),  (3)
and choosing f(k,, k,) such that
S (En Ez) >0,

(212)=1, (4)
one arrives at
(21Q10)=0+% lim (2 |fvp(§, 0)d®x 10), (5)
P =0

where @ and p are the well-known charge and
charge density operators in a free theory.

A general analysis* shows that even in the
case of exact symmetries, Eq. (2) will hold
only for a particular class of states which have
the physical meaning of differing from the vac-
uum only in a finite region.

It is therefore desirable to obtain a theorem
of Coleman® and Fabri-Picasso?® type without
any use of Eq. (2). We take Eq. (1) as only a
heuristic guide and assume the following:

(A) There exist unitary operators U(7, t)

974

=exp[iTQ(#)] that transform local operators
into local operators (which might belong to dif-
ferent space-time regions):

U(t, )AU™ (1, t) :A'r (6)

N

(B) These operators satisfy

[Pi, U(r,)]=0 (i=1,2,3). (7)

(C) The transformed operators satisfy

(d/d'r)AT’ t=z’[Q(t),AT’t]si[fvj°(i, t)dsx,AT, ) ®)
where because of local commutativity the in-
tegration is only taken over a finite region;*
it is this relation which replaces the formal
Eq. (1).

We can work without loss of generality with
a unique vacuum state, which is equivalent to
the assumption of the irreducibility of the al-
gebra of local operators.5’®

From (7) one obtains

PiU(T, H10y=0 (:=1,2,3) 9)

and, therefore, due to the uniqueness of the
vacuum (only discrete eigenstate of the linear
momentum),

U(r, t) 10) = |0) exp[iTA(2)], (10)

and by a trivial redefinition of Q(¢) one arrives
at

U(r,t)10) = |0). (11)

Equation (11) implies the following invariance
property of the Wightman functions:

© IAT, p 10)=(0 A 0), (12)

where A is any local operator and, in particu-
lar, could be a local Wightman polynomial in
the basic fields.®

We shall show now that A;  is independent
of ¢ to arrive at the conclusion that there exists
an exact symmetry of the theory in the usual
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sense. For this purpose we introduce

o(x) =i () /ax ', w(x) =a0(x)/at (13)
and find, using (8) and (12),

d
=0T (010 ] __,

b

=0=i0 [ °(, %, 1(0)]10), ~ (14)

and therefore, since boundary terms drop be-
cause of local commutativity,

(011 ¢(%, 0, 7(0)]10) =0, (15)

which using the Lehmann-Killen representa-
tion7®

©1[ew), (9 110) = [“p(k?) Al —y, k})d?,

o(k?) =0, (16)
implies
f:op(icz)dfcz =0 (17a)
and, therefore,
p(k?) =0. (17b)

With (17b) one has that

©19() () 10) = |7 p(k® A Dx~y, k¥)dr?=0, (18)

and since the metric in the Hilbert space is
positive definite, Eq. (18) gives

@(x) 10y =0. (19)

and by the Johnson-Federbush® theorem,

o) = 8" /ax " =0. (20)

From Eq. (20) one deduces now
[Q(1)-Q(0),A] for all A, (21)

and Eq. (21) together with the irreducibility
of the algebra of local operators and (11) im-
plies

Q(#) = (0). (22)

Therefore, assumptions (A), (B), and (C) im-
ply the existence of an exact symmetry which
commutes with the space-time translations.
It is thus impossible to set up an algebra for
the “generators” of approximate symmetries
in the sense of Gell-Mann,°>*! gince those gen-
erators do not exist. However, the algebra
of the currents integrated over a finite but ar-
bitrarily large volume might exist and lead to
the same consequences as the formal Gell-Mann
algebra.'?
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Using a polarized proton target, we have
measured the polarization parameter P(6) in
pion-proton scattering for both positive and
negative pions. Because there seems to be a
great deal of current interest in the analysis
of pion-proton scattering, we wish to present
these experimental results at this time, even
though we have not yet completed their analy-

sis. The measurement consisted of scattering
pions from polarized target protons and observ-
ing the asymmetry in scattered intensity, I(6),
as the spin directions of the target protons were
reversed. The intensity for scattering from

a target of polarization, Prp, is

1(9)pol =1(9)unp01[1 + P(e)PT],
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